

Communication

Structural and Spectroscopic Characterization of (-Hydroxo or -Oxo)(-peroxo)diiron(III) Complexes: Models for Peroxo Intermediates of Non-Heme Diiron Proteins

Xi Zhang, Hideki Furutachi, Shuhei Fujinami, Shigenori Nagatomo, Yonezo Maeda, Yoshihito Watanabe, Teizo Kitagawa, and Masatatsu Suzuki J. Am. Chem. Soc., 2005, 127 (3), 826-827• DOI: 10.1021/ja045594a • Publication Date (Web): 29 December 2004 Downloaded from http://pubs.acs.org on March 24, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 6 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 12/29/2004

Structural and Spectroscopic Characterization of (μ -Hydroxo or μ -Oxo)(μ -peroxo)diiron(III) Complexes: Models for Peroxo Intermediates of Non-Heme Diiron Proteins

Xi Zhang,[†] Hideki Furutachi,^{*,†} Shuhei Fujinami,[†] Shigenori Nagatomo,[‡] Yonezo Maeda,[§] Yoshihito Watanabe,^{II} Teizo Kitagawa,[‡] and Masatatsu Suzuki^{*,†}

Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, Center for Integrative Bioscience, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan, Department of Chemistry, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan, and Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

Received July 22, 2004; E-mail: suzuki@cacheibm.s.kanazawa-u.ac.jp

µ-1,2-Peroxodiiron(III) species have been spectroscopically identified as reaction intermediates for the dioxygen activating diiron proteins or some variants such as methane monooxygenase (MMO), ribonucleotide reductase (RNR), stearoyl-acyl carrier protein Δ^9 -desaturase (Δ^9 D), and ferritin.^{1,2} Some of them are further activated to bis(µ-oxo)diiron(IV) or bis(µ-oxo)diiron(III,IV) species, which are responsible for oxidation of substrates. Diiron centers of those proteins have a common carboxylate-rich environment (four carboxylate and two N donors for MMO, RNR, and Δ^9 D). Various synthetic (peroxo)diiron(III) complexes including three structurally characterized complexes have been developed, and they provided a chemical basis for understanding of structural and various spectroscopic properties of the (peroxo)diiron complexes.³⁻⁶ To obtain further fundamental insights into structural and spectroscopic properties and reactivities of the (peroxo)diiron-(III) species, further model (peroxo)diiron(III) complexes are needed, which have a biologically relevant ligand environment such as terminal carboxylate(s) and bridging hydroxide or oxide commonly found in diiron(III) forms.¹ Here, we report the first structurally characterized (µ-hydroxo)(µ-peroxo)diiron(III) complex $[Fe_2(6Me_2-BPP)_2(OH)(O_2)]X$ (2·X: X = CF₃SO₃ (2·OTf), $B(3-ClPh)_4$ (2·B(3-ClPh)_4)) and (μ -oxo)(μ -peroxo)diiron(III) complex $[Fe_2(6Me_2-BPP)_2(O)(O_2)]$ (3) with a tripodal ligand (6Me₂-BPP)⁷ having a terminal carboxylate and the relationship among ligand environmental effects, spectroscopic properties, and reactivity.

Reaction of [Fe₂(6Me₂-BPP)₂(O)(OH)](OTf)·3.5H₂O (1)⁸ with \sim 100 equiv of H₂O₂ in methanol at -80 °C gave a blue complex 2, which can be further converted to a purple complex 3 by addition of Et₃N. Crystal structure of 2·B(3-ClPh)₄ showed that the complex has an Fe₂(μ -OH)(μ -1,2-O₂) core and each iron has a six-coordinate structure with N₃O₃ donors (Figure 1A). Two iron centers are inequivalent; the peroxo oxygen in the Fe1 site is trans to a tertiary amine nitrogen, while that in the Fe2 site is trans to a carboxylate oxygen. The structure of 3 is similar to 2·B(3-ClPh)₄, but unfortunately, μ -oxo and μ -1,2-peroxo groups are disordered over two positions with 0.5 occupancy (Figure 1B). Detailed discussion about metric parameters of 3 may not be warranted, but comparison of the structural features with 2 is useful. The O1-O2 bond length of **2**•B(3-ClPh)₄ is 1.396(5) Å (cf. 1.41(1) Å for **3**), which is slightly shorter than those of the (peroxo)diiron(III) complexes (1.406(8)-1.426(6) Å).⁴ The Fe····Fe distance (3.396(1) Å) of **2** is comparable to those of the complexes with a bridging phenolate or alkoxide

Figure 1. ORTEP views (50% probability) of $2 \cdot B(3-ClPh)_4$ (A) and 3 (B). Selected bond distances (Å) and angles (deg) for $2 \cdot B(3-ClPh)_4$: Fe1-O1, 1.867(4); Fe1-O3, 2.006(4); Fe1-O4, 1.986(4); Fe1-N1, 2.208(4); Fe1-N2, 2.232(5); Fe1-N3, 2.204(4); Fe2-O2, 1.887(4); Fe2-O3, 1.943(4); Fe2-O6, 1.999(4); Fe2-N4, 2.183(5); Fe2-N5, 2.193(5); Fe2-N6, 2.221-(5); O1-O2, 1.396(5); Fe1-\cdot\cdotFe2, 3.396(1); Fe1-O3-Fe2, 118.6(2); Fe1-O1-O2, 123.1(3); Fe2-O2-O1, 120.4(3); Fe1-O1-O2-Fe2, -14.5(4).

(3.327(2)–3.462(3) Å)^{4a,b} whereas longer than that of **3** (3.171(1) Å). Mössbauer spectra of **2**·B(3-ClPh)₄ and **3** at 80 K showed single quadrupole doublets with δ (ΔE_Q) = 0.50 (1.31) and 0.50 (1.46) mm/s, respectively. The ΔE_Q values are comparable to that of **1** (δ (ΔE_Q) = 0.44 (1.56) mm/s) but larger than that of [Fe₂(6Me₂-BPP)₂-(OH)₂]²⁺ (**4**) (δ (ΔE_Q) = 0.42 (1.16) mm/s), suggesting that the peroxide also acts as a stronger π -donor and causes a larger electric field gradient around the Fe(III) centers as the oxo bridge.

It is noted that the bridging hydroxide and oxide significantly influence the spectroscopic properties. The electronic spectrum of **2**•OTf showed an intense peroxide (π_v^* orbital)-to-Fe(III) (d_{π} orbital) LMCT band⁵ at 644 nm ($\epsilon = 3000 \text{ M}^{-1} \text{ cm}^{-1}$), whereas that of **3** showed a CT band at 577 nm ($\epsilon = 1500 \text{ M}^{-1} \text{ cm}^{-1}$) (Figure 2). Such a significant blue shift and low intensity of the CT band of **3** can be partly ascribed to a stronger π -donation of the bridging oxide, which increases the d_{π} orbital energy of Fe(III) centers (diminishing the Lewis acidity of Fe(III) centers), increases the energy gap between d_{π} orbitals and π_v^* orbital of the peroxide, and decreases an overlap between them, leading to a blue shift and low intensity of the CT band.² The terminal carboxylate also influences the CT energy and reactivity. A closely related (μ -oxo)- $(\mu$ -peroxo)diiron(III) complex $[Fe_2(6Me_3-tpa)_2(O)(O_2)]^{2+}$ (5) having N₄ donors exhibits a CT band at 648 nm ($\epsilon = 1200 \text{ M}^{-1} \text{ cm}^{-1}$),^{6,9} which is red-shifted relative to that of 3, indicating that the terminal carboxylate also functions as a stronger donor. In addition, 5 can be converted into a bis(µ-oxo)diiron(III,IV) species by O-O bond cleavage, which is accelerated by treatment of HClO₄. In contrast, no such conversion was detected for 3 and the reaction with HClO₄

[†] Kanazawa University.

[‡] Okazaki National Research Institutes. [§] Kyushu University.

[&]quot;Nagoya University.

Figure 2. Electronic spectra of 2. OTf (a) and 3 (b) in CH₃OH at -80 °C and resonance Raman spectra of 2 (prepared from $H_2^{16}O_2$ (c) and $H_2^{18}O_2$ (d)) and **3** (prepared from $H_2^{16}O_2$ (e) and $H_2^{18}O_2$ (f)) in CH₃OH at -80 °C.

caused the conversion to 2,10 suggesting an increase of basicity of the bridging oxide by stronger donation of the carboxylate in 3.

The resonance Raman spectra of 2 and 3 (Figure 2c-f) showed several features which shifted downward by ¹⁸O-substitution. For complex 2, we assigned two bands at 919 and 896 cm^{-1} to the ν (O–O) as a Fermi doublet (the intrinsic $\nu_{O-O}^{0} = 908 \text{ cm}^{-1}$; 881 and 850 cm⁻¹ for an ${}^{18}\text{O}_2$ sample, $\nu_{O-O}{}^0$ = 861 cm⁻¹).¹¹ The bands at 548 (18O₂: 536 cm⁻¹) and 498 (18O₂: 493 cm⁻¹) can be assigned to the $\nu_{as}(Fe-O_{OH}) + \nu_{as}(Fe-O_{O-O})$ and $\nu_{s}(Fe-O_{OH})$, respectively, based on normal coordinate analysis (NCA).12 The analysis also indicated that the bands at 473 and 456 cm⁻¹ can be assigned to v_s (Fe-O_{O-O}) as a Fermi doublet ($v_{Fe-O}^0 = 460 \text{ cm}^{-1}$; 447 cm⁻¹ for a ${}^{18}\text{O}_2$ sample). For complex **3**, a band at 847 cm⁻¹ (${}^{18}\text{O}_2$: 814 cm⁻¹) can be assigned to the ν (O–O) and a band at 465 cm⁻¹ $({}^{18}\text{O}_2: 446 \text{ cm}^{-1})$ to the $\nu_s(\text{Fe}-\text{O}_{O-O})$. The $\nu(O-O)$ of **2** is similar to those of (peroxo)diiron(III) complexes (880-900 cm⁻¹),^{3,5} whereas it is significantly higher than that of 3 (847 cm^{-1}) and 5 (848 cm^{-1}) .⁶ It has been shown that the $\nu(O-O)$ and $\nu_s(\text{Fe}-O_{O-O})$ depend on the Fe-O-O angle; as the Fe-O-O angle becomes larger, the $\nu(O-O)$ becomes higher and the $\nu_s(Fe-O_{O-O})$ becomes lower by mechanical coupling.⁵ This is also the case for 2 (Fe- $O-O_{av} = 121.8^{\circ}$) and **3** (Fe-O-O = ~115^{\circ}): the $\nu(O-O)$ of **2** (908 cm⁻¹) is higher than that of **3** (847 cm⁻¹), and the ν_s (Fe- O_{O-O}) of 2 (460 cm⁻¹) is lower than that of 3 (465 cm⁻¹). However, a large change in the $\nu(O-O)$ ($\Delta = 61 \text{ cm}^{-1}$) and a small change in the $\nu_{\rm s}({\rm Fe-O}_{\rm O-O})$ ($\Delta = 5 \text{ cm}^{-1}$) between 2 and 3 also suggest the presence of some other contributions such as the bonding nature of the peroxide as observed for CT energies and intensities; the stronger donation of the peroxide in 2 increases the $\nu(O-O)$ and $\nu_{s}(\text{Fe}-\text{O}_{\text{O}-\text{O}})$, leading to an increase of change in the $\nu(\text{O}-\text{O})$ and a decrease of change in the $\nu_s(\text{Fe}-\text{O}_{O-O})$ by an offset effect.¹³

It has been proposed that the changes in the $\nu(O-O)$ and $v_{\rm s}({\rm Fe-O}_{\rm O-O})$ frequencies for RNR-W48F/D84E (868 and 457 cm^{-1}),^{2,14} $\Delta^9 D$ (898 and 442 cm^{-1}),¹⁵ and ferritin (851 and 485 cm⁻¹)¹⁶ depend on the Fe–O–O angles. Very short Fe···Fe distances (~ 2.5 Å) have been reported for the peroxo-intermediates of ferritin¹⁷ and RNR-W48A/D84E.¹⁸ Such a short Fe···Fe distance requires a small Fe-O-O angle as observed for [Mn₂(L)₂(O)₂- $(O_2)^{2+}$ (Mn···Mn = 2.531(7) Å and Mn-O-O = 106.9°).¹⁹ However, for the relatively high ν (O–O) frequency (868 cm⁻¹) of RNR-W48F/D84E, Solomon et al. pointed out that a short (2.5 Å) Fe---Fe distance reported for RNR-W48A/D84E which is proposed to be analogous to RNR-W48F/D84E is not supported from spectroscopic analyses for RNR-W48F/D84E.² A lower CT energy of RNR-W48F/D84E (~700 nm) compared to those of the model complexes suggests the high Lewis acidity of Fe(III) centers in RNR-W48F/D84E relative to the model complexes except for $[Fe_2{HB(3,5-i^{Pr2}pz)_3}_2(O_2)(PhCO_2)_2]^{2,5}$

In summary, structures and spectroscopic properties of both (μ hydroxo)(μ -peroxo) and (μ -oxo)(μ -peroxo)diiron(III) complexes provide fundamental chemical insights into the nature of $(\mu$ -1,2peroxo)diiron(III) complexes, although further comprehensive structural and spectroscopic data of model complexes and proteins are needed.

Acknowledgment. Financial support of this research by the Ministry of Education, Science, and Culture Grant-in-Aid for Scientific Research to H. F., M. S., T. K., and Y. W. is gratefully acknowledged.

Supporting Information Available: Synthesis, X-ray crystallography, spectroscopic characterization, analyses of Fermi resonance, and NCA results. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For example, see: (a) Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, For example, see. (a) Merkx, M., Kopp, D. A., Sazhisky, M. H., Blazyk, J. L.; Müller, J.; Lippard, S. J. Angew. Chem., Int. Ed. 2001, 40, 2782–2807. (b) Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.; Lee, S.-K.; Lehnert, N.; Neese, F.; Skulan, A. J.; Yang, Y.-S.; Zhou, J. Chem. Rev. 2000, 100, 235–349. (c) Wallar, B. J.; Lipscomb, J. D. Chem. Rev. 1996, 96, 2625–2657.
- (2) Skulan, A. J.; Brunold, T. C.; Baldwin, J.; Saleh, L.; Bollinger, J. M., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2004, 126, 8842-8855.
- (3) For example, see: (a) Tshuva, E. Y.; Lippard, S. J. Chem. Rev. 2004, 104, 987–1012. (b) Tolman, W. B.; Que, L., Jr. J. Chem. Soc., Dalton Trans. 2002, 653–660. (c) Bois, J. D.; Mizoguchi, T. J.; Lippard, S. J. Coord. Chem. Rev. 2000, 200–202, 443–485. (d) Girerd, J.-J.; Banse, F.; Simaan, A. J. Struct. Bonding **2000**, 97, 145–177. (e) Que, L., Jr. J. Chem. Soc., Dalton Trans. **1997**, 3933–3940.
- (a) Ookubo T.; Sugimoto, H.; Nagayama, T.; Masuda, H.; Sato, T.; Tanaka, K.; Maeda, Y.; Okawa, H.; Hayashi, Y.; Uehara, A.; Suzuki, M. J. Am. *Chem. Soc.* **1996**, *118*, 701–702. (b) Dong, Y.; Yan, S.; Young, V. G., Jr.; Que, L., Jr. Angew. Chem., Int. Ed. Engl. **1996**, *35*, 618–620. (c) Kim, K.; Lippard, S. J. J. Am. Chem. Soc. **1996**, *118*, 4914–4915.
- (5) Brunold, T. C.; Tamura, N.; Kitajima, N.; Moro-oka, Y.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 5674-5690.
- (6) (a) MacMurdo, V. L.; Zheng, H.; Que, L., Jr. Inorg. Chem. 2000, 39, 2254-2255. (b) Dong. Y.; Zang, Y.; Shu, L.; Wilkinson, E. C.; Que, L. Jr.; Kauffmann, K.; Münck, E. J. Am. Chem. Soc. 1997, 119, 12683-12684
- (7) Abbreviations used: $6Me_2$ -BPP = N,N-bis(6-methyl-2-pyridylmethyl)a-aminopropionate; $6Me_2$ -pa = tris(6-methyl-2-pyridylinethyl)amine; L = 1,4,7-trimethyl-1,4,7-triazacyclononane; $HB(3,5^{-ifr2}pz)_3$ = hydro-
- (8) Synthesis, X-ray crystallography, and spectroscopic characterization of the complexes are given in the Supporting Information.
 (9) Lower intensity of CT band of 5 relative to that of 3 suggests some other
- contributions together with the Lewis acidity of Fe(III) centers.
- (10) Complexes 2 and 3 can be reversibly converted by treatment of $HClO_4$ or Et₃N at -80 °C (see Figures S5 and S6).
- (11) Quantitative analyses of Fermi resonance are given in the Supporting Information.
- NCA was performed by the Wilson GF matrix method with Urey-Bradley (12)force field using ring models (Fe2(µ-OH or O)(µ-O2)) obtained by X-ray analyses. Reasonable fittings were obtained (see Supporting Information).
- (13)This is in line with larger force constants $(K(O-\hat{O}) = 3.55 \text{ and } K(Fe))$ O_{O-O} = 2.18 mdyn/Å) for 2 relative to those of 3 (K(O-O) = 3.25 and $K(Fe - O_{O-O}) = 1.84 \text{ mdvn/Å}).$
- (14) Moënne-Loccoz, P.; Baldwin, J.; Ley, B. A.; Loehr, T. M.; Bollinger, J. M., Jr. Biochemistry 1998, 37, 14659-14663.
- (15) Broadwater, J. A.; Ai, J.; Loehr, T. M.; Sanders-Loehr, J.; Fox, B. G. Biochemistry 1998, 37, 14664–14671.
- (16) Moënne-Loccoz, P.; Krebs, C.; Herlihy, K.; Edmondson, D. E.; Theil, E. C.; Huynh, B. H.; Loehr, T. M. *Biochemistry* 1999, *38*, 5290–5295.
 (17) Hwang, J.; Krebs, C.; Huynh, B. H.; Edmondson, D. E.; Theil, E. C.; Penner-Hahn, J. E. *Science* 2000, *287*, 122–125.
- (18) Baldwin, J.; Krebs, C.; Saleh, L.; Stelling, M.; Huynh, B. H.; Bollinger,
- J. M., Jr.; Riggs-Gelasco, P. *Biochemistry* 2003, 42, 13269–13279.
 (19) Bossek, U.; Weyhermüller, T.; Wieghardt, K.; Nuber, B.; Weiss, J. J. Am. Chem. Soc. 1990, 112, 6387–6388.

JA045594A